The Nature of the Bonding in Some P-N, As-N, and S-N Compounds

By A. H. Cowley* and J. R. Schweiger

(Department of Chemistry, The University of Texas, Austin, Texas 78712)

Summary The ¹⁵N-1H coupling constants in some aminophosphines, aminoarsines, and sulphenamides have been determined.

AMINOPHOSPHINES,¹ aminoarsines,¹ and sulphenamides² have recently been found to possess substantial torsional barriers about the N-X bonds (X = P, As, or S). Furthermore, an X-ray crystallographic study³ of the aminophosphine, $(CH_3)_2NPF_2$, has revealed a trigonal planar geometry about nitrogen and an unexpectedly short P-N bond distance. These findings have raised two important but related questions: (a) is trigonal planar nitrogen a general structure feature of aminophosphines, aminoarsines, and sulphenamides? and (b) what is the importance of multiple bonding in the N-X bonds of these compounds? We

present some new ${}^{15}N-H$ spin coupling data which are relevant to these questions.

The appropriate ¹⁵N-labelled compounds (Table) were prepared by substituting 96.5% enriched $^{15}NH_3$ for $^{14}NH_3$ in the syntheses described in the literature. The experimental scalar ¹⁵N-H couplings have been related to the percentage 2s character in the nitrogen bonding orbitals by the phenomenological equation of Binsch *et al.*⁴

$$\% 2s = 0.43 J(^{15}N-H) - 6$$

These results suggest that the nitrogen atoms are approximately trigonal planar in $(CF_3)_2PNH_2$, $[CF_3S]_2NH$, and the phosphorane $PF_3(NH_2)_2$. On the other hand, the aminoarsines, the methyl-substituted aminophosphines, and

CHEMICAL COMMUNICATIONS, 1970

CF₃SNH₂ are predicted to possess approximately tetrahedral geometry at nitrogen. Thus, from a purely electronic standpoint, planar geometry at nitrogen is expected for N-P and N-S compounds with strongly electronegative substituents at phosphorus or sulphur.

TABLE

Compound	$J(^{15}N-H)$	Nitrogen %2s	
(CF.) PNH.	85.6	30.8	
PF.(NH.).	87.5	31.6	
CF,CH,PNH,	78.9	27.9	
[CF ₃ CH ₃ P] ₂ NH	77·4, 78·9ª	27.3, 27.9	
(CF ₃) ₂ AsNH ₂	73.4	$25 \cdot 6$	
(CF ₃) ₂ As] ₂ NH	79.0	28.0	
CF ₃ SNH ₂	80.6	28.7	
[CF.S].NH	99.1	36.6	

^a The observation of two $\int (^{15}N-H)$ values is due to the phosphorus chiral centres.

Our data are consistent with the π -bonding hypothesis in that attachment of electronegative groups to phosphorus

or sulphur contracts and lowers the energy of the 3dorbitals, thus facilitating $2p_{\pi}-3d_{\pi}$ bonding.⁵[†] This interaction is maximised when the nitrogen geometry is planar and the lone pair resides in a pure 2p-orbital. In this model π -bonding should not be as important in aminoarsines because of the less effective overlap of the 2pnitrogen orbital with the 4d arsenic orbitals. The large J(15N-H) in $PF_3(NH_2)_2$ is indicative of appreciable π bonding in the equatorial sites of a trigonal bipyramid.[‡] This conclusion is consonant with molecular orbital calculations on the phosphorus(v) chlorofluorides.⁶ Our results can also be interpreted in terms of a σ -bonding model, viz. in the structures XNH₂ and X₂NH increasing the electronegativity of X diverts more 2s character into the N-H bonds' and thereby increases the Fermi contact contribution to $J(^{15}N-H)$. On this basis the inferred order of group electronegativity towards the NH_2 moiety is $(NH_2)PF_3$ $> (CF_3)_2 P > CF_3 S > CF_3 CH_3 P > (CF_3)_2 As.$

We thank the National Science Foundation and the Robert A. Welch Foundation for financial support.

(Received, September 7th, 1970; Com. 1513.)

† Most discussions of m-bonding have related to the use of the vacant 3d-orbitals of e.g., P or S. However, derived valence state ionisation potential data indicate that, for neutral atoms, the 4p- and 3d-orbitals are very close in energy. Consequently, $2p_{\pi}-4p_{\pi}$ bonding may be as important as $2p_{\pi}-3d_{\pi}$ bonding. See L. C. Cusachs and J. R. Linn, J. Chem. Phys., 1967, 46, 2919.

The ¹⁹F n.m.r. data are best interpreted in terms of a trigonal bipyramidal structure with equatorial NH₂ groups. See M. Lustig and H. W. Roesky, Inorg. Chem., 1970, 9, 1289.

¹ A. H. Cowley, M. J. S. Dewar, W. R. Jackson, and W. B. Jennings, *J. Amer. Chem. Soc.*, 1970, **92**, 5206. ² M. Raban, G. W. J. Kenney, jun., and F. B. Jones, jun., *J. Amer. Chem. Soc.*, 1969, **91**, 6677; J. M. Lehn and J. Wagner, *Chem.* Comm., 1968, 1298.

⁸ E. D. Morris, jun., and C. E. Nordman, Inorg. Chem., 1969, 8, 1672.

⁴G. Binsch, J. B. Lambert, B. W. Roberts, and J. D. Roberts, *J. Amer. Chem. Soc.*, 1964, 86, 5564. ⁵D. P. Craig, A. Maccoll, R. S. Nyholm, L. E. Orgel, and L. E. Sutton, *J. Chem. Soc.*, 1954, 332; H. H. Jaffe, *J. Inorg. Nuclear* Chem., 1957, 4, 372.

⁶ P. C. Van Der Voorn and R. S. Drago, J. Amer. Chem. Soc., 1966, 88, 3255.

⁷ H. A. Bent, Chem. Rev., 1961, 61, 275.